Goto

Collaborating Authors

 Taxation Law




Can AI expose tax loopholes? Towards a new generation of legal policy assistants

arXiv.org Artificial Intelligence

The legislative process is the backbone of a state built on solid institutions. Yet, due to the complexity of laws -- particularly tax law -- policies may lead to inequality and social tensions. In this study, we introduce a novel prototype system designed to address the issues of tax loopholes and tax avoidance. Our hybrid solution integrates a natural language interface with a domain-specific language tailored for planning. We demonstrate on a case study how tax loopholes and avoidance schemes can be exposed. We conclude that our prototype can help enhance social welfare by systematically identifying and addressing tax gaps stemming from loopholes.


Taxation Perspectives from Large Language Models: A Case Study on Additional Tax Penalties

arXiv.org Artificial Intelligence

How capable are large language models (LLMs) in the domain of taxation? Although numerous studies have explored the legal domain in general, research dedicated to taxation remain scarce. Moreover, the datasets used in these studies are either simplified, failing to reflect the real-world complexities, or unavailable as open source. To address this gap, we introduce PLAT, a new benchmark designed to assess the ability of LLMs to predict the legitimacy of additional tax penalties. PLAT is constructed to evaluate LLMs' understanding of tax law, particularly in cases where resolving the issue requires more than just applying related statutes. Our experiments with six LLMs reveal that their baseline capabilities are limited, especially when dealing with conflicting issues that demand a comprehensive understanding. However, we found that enabling retrieval, self-reasoning, and discussion among multiple agents with specific role assignments, this limitation can be mitigated.


NitiBench: A Comprehensive Studies of LLM Frameworks Capabilities for Thai Legal Question Answering

arXiv.org Artificial Intelligence

The application of large language models (LLMs) in the legal domain holds significant potential for information retrieval and question answering, yet Thai legal QA systems face challenges due to a lack of standardized evaluation benchmarks and the complexity of Thai legal structures. This paper introduces NitiBench, a benchmark comprising two datasets: the NitiBench-CCL, covering general Thai financial law, and the NitiBench-Tax, which includes real-world tax law cases requiring advanced legal reasoning. We evaluate retrieval-augmented generation (RAG) and long-context LLM-based approaches to address three key research questions: the impact of domain-specific components like section-based chunking and cross-referencing, the comparative performance of different retrievers and LLMs, and the viability of long-context LLMs as an alternative to RAG. Our results show that section-based chunking significantly improves retrieval and end-to-end performance, current retrievers struggle with complex queries, and long-context LLMs still underperform RAG-based systems in Thai legal QA. To support fair evaluation, we propose tailored multi-label retrieval metrics and the use of an LLM-as-judge for coverage and contradiction detection method. These findings highlight the limitations of current Thai legal NLP solutions and provide a foundation for future research in the field. We also open-sourced our codes and dataset to available publicly.




Investigating Tax Evasion Emergence Using Dual Large Language Model and Deep Reinforcement Learning Powered Agent-based Simulation

arXiv.org Artificial Intelligence

Tax evasion, usually the largest component of an informal economy, is a persistent challenge over history with significant socio-economic implications. Many socio-economic studies investigate its dynamics, including influencing factors, the role and influence of taxation policies, and the prediction of the tax evasion volume over time. These studies assumed such behavior is given, as observed in the real world, neglecting the "big bang" of such activity in a population. To this end, computational economy studies adopted developments in computer simulations, in general, and recent innovations in artificial intelligence (AI), in particular, to simulate and study informal economy appearance in various socio-economic settings. This study presents a novel computational framework to examine the dynamics of tax evasion and the emergence of informal economic activity. Employing an agent-based simulation powered by Large Language Models and Deep Reinforcement Learning, the framework is uniquely designed to allow informal economic behaviors to emerge organically, without presupposing their existence or explicitly signaling agents about the possibility of evasion. This provides a rigorous approach for exploring the socio-economic determinants of compliance behavior. The experimental design, comprising model validation and exploratory phases, demonstrates the framework's robustness in replicating theoretical economic behaviors. Findings indicate that individual personality traits, external narratives, enforcement probabilities, and the perceived efficiency of public goods provision significantly influence both the timing and extent of informal economic activity. The results underscore that efficient public goods provision and robust enforcement mechanisms are complementary; neither alone is sufficient to curtail informal activity effectively.


WILDCHAT-50M: A Deep Dive Into the Role of Synthetic Data in Post-Training

arXiv.org Artificial Intelligence

Language model (LLM) post-training, from DPO to distillation, can refine behaviors and unlock new skills, but the open science supporting these post-training techniques is still in its infancy. One limiting factor has been the difficulty of conducting large-scale comparative analyses of synthetic data generating models and LLM judges. To close this gap, we introduce WILDCHAT-50M, the largest public chat dataset to date. We extend the existing WildChat dataset to include responses not only from GPT, but from over 50 different open-weight models, ranging in size from 0.5B to 104B parameters. We conduct an extensive comparative analysis and demonstrate the potential of this dataset by creating RE-WILD, our own public SFT mix, which outperforms the recent Tulu-3 SFT mixture from Allen AI with only 40% as many samples. Our dataset, samples and code are available at https://github.com/penfever/wildchat-50m.


RuleArena: A Benchmark for Rule-Guided Reasoning with LLMs in Real-World Scenarios

arXiv.org Artificial Intelligence

This paper introduces RuleArena, a novel and challenging benchmark designed to evaluate the ability of large language models (LLMs) to follow complex, real-world rules in reasoning. Covering three practical domains -- airline baggage fees, NBA transactions, and tax regulations -- RuleArena assesses LLMs' proficiency in handling intricate natural language instructions that demand long-context understanding, logical reasoning, and accurate mathematical computation. Two key attributes distinguish RuleArena from traditional rule-based reasoning benchmarks: (1) it extends beyond standard first-order logic representations, and (2) it is grounded in authentic, practical scenarios, providing insights into the suitability and reliability of LLMs for real-world applications. Our findings reveal several notable limitations in LLMs: (1) they struggle to identify and apply the appropriate rules, frequently becoming confused by similar but distinct regulations, (2) they cannot consistently perform accurate mathematical computations, even when they correctly identify the relevant rules, and (3) in general, they perform poorly in the benchmark. These results highlight significant challenges in advancing LLMs' rule-guided reasoning capabilities in real-life applications.